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Pablo G. Cámaraa and Emilian Dudasab
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1. Introduction

In the last years there has been a remarkable progress in understanding the structure

of String Theory at tree-level in the perturbative expansion, that is, in the supergravity

limit. Flux compactifications [3] have provided us with a helpful framework which partially

addresses long-standing problems such as moduli stabilization or supersymmetry breaking.

However, despite this progress, the resulting message continues to be that non-perturbative

and string loop corrections play an indispensable role, mainly due to the generic presence

of remnant flat directions in the scalar potential and the difficulties of obtaining a chiral

spectrum in their absence.

The computation of α′ and non-perturbative corrections to the effective theory is still in

an early stage, even for cases where a description in terms of a free CFT is available. Much
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effort has been pursued on understanding the role of N = 1 euclidean brane instantons [4].

These may turn out to be useful for generating new couplings in the superpotential [5 – 9],

moduli-stabilization [10] or supersymmetry breaking [11]. Moreover, the one-loop string

corrections to the Kähler potential computed in [12], have been shown to play an important

role in large volume scenarios [13], leading to a hierarchy of mass scales without the neces-

sity of a big amount of fine-tuning. Additional one-loop string corrections to the Kähler

potential have been computed in [1, 2] for toroidal compactifications (see also [14, 15]).

In this note, we analyze multi-instanton and one-loop string corrections arising from

N = 2 sectors in toroidal orbifold compactifications of type I String Theory. These gener-

ically correct the Kähler potential, K, and the gauge kinetic function, fa, of the effective

theory, and therefore may play an important role in phenomenological scenarios with clas-

sical flat directions. For this aim, we follow the techniques introduced in [16], and build

type I-heterotic S-dual pairs of orbifold models.

Schematically, the procedure can be summarized as follows. The one-loop physical

gauge couplings in the heterotic side take the expression,

4π2g−2
a (µ2)|1−loop =

ka

ℓ
+

ba

4
log

M2
s

µ2
+

∆a(M,M̄ )

4
, (1.1)

with ℓ the linear multiplet associated to the dilaton, Ms the string scale, M the moduli of

the compactification and ka the normalization of the gauge group generators, determined

by the level of the corresponding Kac-Moody algebra. The β-function coefficient, ba, is

given in terms of the quadratic Casimir invariants of the gauge group,

ba =
∑

r

nrTa(r) − 3Ta(adja) , (1.2)

with nr the number of matter multiplets in the representation r.

On the other hand, the field theory result reads [17, 18],

4π2g−2
a (µ2)|1−loop = Re fa(M)|1−loop +

ba

4

(

log
M2

Planck

µ2
− log(S + S̄)

)

+
1

4

(

caK̂(M,M̄ ) − 2
∑

r

Ta(r)log det Zr(M,M̄ )

)

, (1.3)

where det Zr is the determinant of the tree-level Kähler metric associated to the matter

multiplets in the representation r, K̂(M,M̄ ) the tree-level Kähler potential for the moduli

M and,

ca =
∑

r

nrTa(r) − T (adja) . (1.4)

In order to compare (1.1) and (1.3), it is convenient to express the relation between the

usual complex axiodilaton S and the linear multiplet ℓ as,

1

ℓ
= Re S −

1

4
∆univ. (1.5)
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with ∆univ. a gauge group independent (“universal”) function. In what follows we split

∆univ. in its harmonic and non-harmonic parts,

∆univ.(M,M̄ ) = V(1)(M,M̄ ) + H(M) + H∗(M̄ ) . (1.6)

In terms of these, the Kähler potential and the gauge-kinetic function of the N = 1 effective

theory are given to one-loop by [18 – 20],1

K|1−loop = −log

(

S + S̄ −
1

2
V(1)(M,M̄ )

)

+ K̂(M,M̄ ) , (1.7)

Re fa|1−loop = kaRe S +
1

4

(

∆a(M,M̄ ) − V(1)(M,M̄ ) − caK̂(M,M̄ )

− 2
∑

r

Ta(r)log det Zr(M,M̄ )

)

(1.8)

We can then reinterpret the results in terms of E1 multi-instanton and string loop correc-

tions on the type I side, as K and fa should be invariant (up to Kähler transformations)

under S-duality transformations.

In the present work, we consider in detail two classes of models on which the heterotic

S-dual partition function can be easily worked out: the Bianchi-Sagnotti-Gimon-Polchinsky

(BSGP) orbifold [21, 22], with gauge group U(16) × U(16), and the Z2 × Z2 freely-acting

orbifold model with gauge group SO(q) × SO(32 − q), presented in [16] and based on the

model of [23] (see also [24]). The motivation is multiple. First, based on the modular

symmetries preserved by the scalars in Calabi-Yau compactifications, and more precisely

on the axionic shift symmetries, it has been argued in [25] that non-perturbative corrections

to the gauge kinetic function should appear in an exponentiated form, exp(2πM), with M

the corresponding moduli. Our results on the BSGP orbifold show indeed that global

symmetries constrain very much the shape of multi-instanton and string-loop corrections

and, with few extra assumptions, they are completely determined in models on which

modular invariance in the moduli space of the compactification applies.2

The freely-acting SO(q)× SO(32− q) orbifold model represents, on the other hand, an

example on which part of the original modular symmetry is broken by the compactification.

A remarkable fact, already pointed out in [16], is that E1 instantons in this model always

appear within multiplets under the orbifold action (doublets or quadruplets). We believe

that this may be a general feature of flux compactifications, where the fluxes gauge some of

the original symmetries and induce non-trivial discrete torsion. It is therefore interesting

to see how non-perturbative and loop corrections are affected by the “background” in this

simple example. Moreover, it was also observed in [16] that, in the heterotic S-duals, the

orbifold action on the winding modes was different for q = 0 (mod 8) or q = 4 (mod 8),

1We have defined S in such a way that the harmonic part of the universal threshold, H(M), naturally

corrects the holomorphic gauge kinetic function. Notice that this is always possible since the chiral field S

has no fixed relation to vertices of string theory.
2For previous works on the role of global symmetries for determining non-perturbative and string loop

corrections, see [26, 28].
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pointing out a possible dependence of the type I instantonic effects on the rank of the gauge

group. It is also our aim to make this dependence explicit.

Although similar computations to the ones performed here have been carried out e.g.

for R4 [26, 27], F 4 [27, 29 – 31] and the four hyperini [32] couplings, this is to our knowledge

the first explicit computation of stringy multi-instanton corrections to the Kähler potential

and the gauge kinetic function. We hope that these results will help to shed some light on

some of the issues raised in the previous paragraphs, and more interestingly, to clarify the

possible role of these corrections in phenomenological scenarios.

The paper is organized as follows. In section 2 we construct the partition function for

the heterotic S-dual of the BSGP orbifold model, and extract the E1 multi-instanton and

one-loop string corrections to the Kähler potential and the gauge kinetic function in the

resulting effective theory. In section 3 we proceed similarly with the SO(q) × SO(32 − q)

freely acting orbifold model. We comment on the possible “universality” of some of our

results and discuss possible generalizations in section 4. Finally, we give some concluding

remarks in section 5. We have relegated all the details on the computations to the appendix,

in order not to overload the bulk of the paper with many technicalities.

2. The Bianchi-Sagnotti-Gimon-Polchinski orbifold

In this section we consider the BSGP type I orbifold model [21, 22], corresponding to the

T 4/Z2×T 2 orbifold limit of type I String Theory compactified on K3×T 2. In order to can-

cel the RR tadpoles, 8 D5-branes and 16 D9-branes are required. For D5 branes lying on top

of an orbifold fixed point, the complete massless spectrum has a U(16)×U(16) gauge group

with hypermultiplets in 2(120,1) + 2(1,120) + (16,16). In the Coulomb branch, where a

half D5-brane is located at each of the 16 fixed points, the Green-Schwarz mechanism takes

place and only the U(16) gauge group from the D9-branes remains massless, with spectrum

given by four hypermultiplets, containing the moduli of the K3, three vector multiplets con-

taining the axiodilaton and the moduli of the T 2, a 120+120, and sixteen 16 coming from

the D5-D9 modes. The coefficient of the β-function turns out to be bU(16) = 12. Perturba-

tive threshold corrections to gauge couplings [38] depend on the moduli of T 2, denoted T1

and U1 in what follows. Since the dilaton S and T1, U1 are in N = 2 vector multiplets in 4d

language, this is consistent with supersymmetry. A priori we expect non-perturbative cor-

rections to depend nontrivially on the three vector multiplets, and to be insensitive to the

T 4/Z2 moduli, called T2,3 and U2,3 in what follows. We will show, by performing explicitly

the computation using the heterotic S-dual, that this expectation is indeed correct.3

2.1 Heterotic S-dual partition function

We want to find the one-loop partition function for the heterotic dual of the BSGP model,

proposed in [39] for the above Coulomb branch. In [40] it was shown that this corresponds

3Due to the nature of our approach, based on type I-heterotic duality, all the computations are carried

out at the orbifold point. In particular, we do not consider blow-up modes which would lead us out of the

orbifold point, and are massive due to the above Green-Schwarz mechanism.
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to a standard SO(32) heterotic T 2 × T 4/Z2 orbifold with shift vector V = 1
4 (1, . . . , 1,−3).

The various orbifold blocks are then as follows. The left-moving fermions contribute as,4

ZL

[

h

g

]

=
1

2η4

1
∑

a,b=0

(−1)a+b+ab+bhϑ2
[a

b

]

ϑ2

[

a + h

b + g

]

, (2.1)

with h, g = 0, 1 labelling the different untwisted and twisted orbifold sectors.

Analogously, the bosonic T 4 blocks read,

Z(4,4)

[

0

0

]

=
Ẑ2Ẑ3

|η|8
and Z(4,4)

[

h

g

]

=

∣

∣

∣

∣

∣

∣

2η

ϑ
[

1−h
1−g

]

∣

∣

∣

∣

∣

∣

4

, for hg 6= 0 . (2.2)

Here we have defined the toroidal lattice sums Ẑr as,

Ẑr =
Re Tr

τ2

∑

n1,ℓ1,n2,ℓ2

exp



−2πTrdet(A) −
π(Re Tr)

τ2(Re Ur)

∣

∣

∣

∣

∣

(

1 iUr

)

A

(

τ

−1

)∣

∣

∣

∣

∣

2


 , (2.3)

A =

(

n1 ℓ1

n2 ℓ2

)

, (2.4)

with ni and ℓi integers. For the right moving fermions we find,

Γ

[

h

g

]

=
1

2η̄16

1
∑

a,b=0

(−1)ga+hbe−
iπhg

2 ϑ̄16

[

a − h
2

b − g
2

]

. (2.5)

Putting everything together we finally get the one-loop partition function for the heterotic

dual of the BSGP model,

T =

∫

F

d2τ

τ3
2

Ẑ1

4|η|8

[

(Qo + Qv)
Ẑ2Ẑ3

|η|8
Γ

[

0

0

]

+ (Qo − Qv)

∣

∣

∣

∣

2η

ϑ2

∣

∣

∣

∣

4

Γ

[

0

1

]

+(Qs + Qc)

∣

∣

∣

∣

2η

ϑ4

∣

∣

∣

∣

4

Γ

[

1

0

]

+ (Qs − Qc)

∣

∣

∣

∣

2η

ϑ3

∣

∣

∣

∣

4

Γ

[

1

1

]

]

, (2.6)

where,

Qo + Qv =
1

2η4
(ϑ4

3 − ϑ4
1 − ϑ4

2 − ϑ4
4) , (2.7)

Qo − Qv =
1

2η4
(ϑ2

3ϑ
2
4 − ϑ2

4ϑ
2
3 − ϑ2

1ϑ
2
2 − ϑ2

2ϑ
2
1) , (2.8)

Qs − Qc =
1

2η4
(ϑ2

1ϑ
2
3 + ϑ2

3ϑ
2
1 + ϑ2

4ϑ
2
2 − ϑ2

2ϑ
2
4) , (2.9)

Qs + Qc =
1

2η4
(ϑ2

3ϑ
2
2 − ϑ2

2ϑ
2
3 + ϑ2

4ϑ
2
1 + ϑ2

1ϑ
2
4) . (2.10)

4In order not to overload the expressions with notation, we have omitted the arguments of the modular

functions. Unless explicitly stated, these are implicitly understood to be functions of τ . Moreover, theta

functions are evaluated at the point ν = 0, as usual. For definitions of the various modular functions, affine

characters and orbifold blocks, see e.g. [41, 42].
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2.2 Perturbative and non-perturbative corrections

Following the general discussion around (1.1), our task here is to compute the one-loop

threshold corrections to the physical gauge coupling in the heterotic model (2.6), as these

are mapped to one-loop and E1 multi-instanton corrections in the BSGP orbifold. In terms

of the partition function, these are given by [33 – 35],

Λ≡
bU(16)

4
log

M2
s

µ2
+

∆U(16)

4
=

∫

F

d2τ

τ2

i

4π

1

|η|4

1
∑

a,b=0

∂τ

(

ϑ
[a

b

]

η

)

(

Q2−
1

4πτ2

)

C
[a

b

]

, (2.11)

where Q is the charge operator of the corresponding gauge group, and C
[

a
b

]

is the internal

six-dimensional partition function. Following the same procedure as in [16] we find,

Λ = −
1

8

∫

F

d2τ

τ2
Ẑ1Âf (2.12)

with,5

Âf = −
1

20η24
(D10E10 − 48η24) =

1

12η24

(

Ê2E4E6 −
5

12
E2

6 −
7

12
E3

4

)

, (2.13)

and Ẑ1 given in (2.3). The definitions of the Eisenstein series, E2k, can be found for

instance in the appendix of [16].

The details of the computation are in appendix A.1. Notice that the numerator of Âf

is an almost-holomorphic modular form, its non-holomorphicity being exclusively due to

the presence of Ê2,

Ê2 ≡ E2 −
3

πτ2
. (2.14)

As it will be made more explicit below, these non-holomorphic terms can be traced back

to perturbative and non-perturbative corrections to the Kähler potential of the effective

theory.

Both, Ẑ1 and Âf , are invariant under the full modular group Γ, so we can directly

apply the method of Dixon-Kaplunovsky-Louis (DKL) [34] to evaluate the integral in (2.12).

This consists of depicting the lattice sum, Ẑ1, into orbits under the modular group, and

evaluate the integral for each class of orbits in a suitable unfolded region of the upper

complex half-plane. The matrices (2.4) can be classified in three kind of orbits under the

modular group,

1. Zero orbit:
(

0 0

0 0

)

,

5The modular covariant derivative Dd is defined as,

Dd =
i

π
∂τ +

d/2

πτ2

– 6 –
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2. Non-degenerate orbits:
(

k j

0 p

)

,

with k > j ≥ 0, p 6= 0 and AV = AV ′ iff V = V ′, for V, V ′ ∈ Γ.

3. Degenerate orbits:
(

0 j

0 p

)

,

with (j, p) ∼ (−j,−p) and AV = AV ′ iff V = T nV ′, for some integer n and V, V ′ ∈ Γ.

We therefore unfold (2.12) into three integrals corresponding to the above representatives.

Non-degenerate orbits are integrated over the double cover of the upper half complex plane,

C
+, whereas degenerate orbits have to be integrated over the fundamental domain, FT , of

the subgroup generated by T , for arbitrary j and p. The details of the computation can be

found in appendix A.1. Putting all pieces together and disregarding constant terms arising

from the regularization scheme, we obtain,

Λ =
π

2
Re T1 − 3

(

log|η(iU1)|
4 + log[(Re U1)(Re T1)µ

2]
)

−
π

3

E(iU1, 2)

T1 + T̄1

−
1

4





∑

k>j≥0,p>0

1

kp
e−2πpkT1

[

Âf (U) +
1

πkp

ÂK(U)

T1 + T̄1

]

+ c.c.



 (2.15)

where E(U, k) is the non-holomorphic Eisenstein series of order k, defined as

E(U, k) ≡
1

ζ(2k)

∑

(j1,j2)6=(0,0)

(Im U)k

|j1 + j2U |2k
, (2.16)

and ÂK the almost-holomorphic modular form,

ÂK =
1

12η24
(Ê2E4E6 + 2E2

6 + 3E3
4) . (2.17)

The second term in (2.15) matches precisely the one-loop threshold corrections com-

puted in [38], whereas the second line in (2.15), corresponds to E1 multi-instanton cor-

rections. These are wrapping the first 2-torus, with induced worldvolume complex struc-

ture [29],

U =
j + ipU1

k
, (2.18)

as depicted in figure 1. Their contribution can be also expressed as a sum over standard

Hecke operators acting on (almost-holomorphic) modular invariant forms,

∑

k>j≥0,p>0

1

kp
e−2πpkT1

[

Âf (U)+
1

πkp

ÂK(U)

T1+T̄1

]

=

∞
∑

N=1

e−2πNT1HN

[

Âf +
1

Nπ

ÂK

T1+T̄1

]

(iU1)

(2.19)
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(j,p)

(k,0)

Figure 1: E1 multi-instanton wrapping the first 2-torus, with induced worldvolume complex struc-

ture U given in (2.18).

with,

HN [Φ](iU) =
1

N

∑

p>0, kp=N

∑

k>j≥0

Φ

(

j + ipU

k

)

. (2.20)

It is thus evident that the invariance of (2.15) under SL(2, Z) transformations of U1, in

agreement with the global symmetry preserved by the orbifold.

In order to extract from (2.15) the corrections to the effective theory, we need the

Kähler metric for the D9-D9 and D9-D5 matter fields. This is given by [52, 53],

KC99
k C̄99

k
=

1

(Tk + T̄k)(Uk + Ūk)
, KC95

k C̄95
k

=
∏

j=2,3

1

[(Tj + T̄j)(Uj + Ūj)]1/2
, (2.21)

for k = 1, 2, 3, so that,
∑

r

Ta(r)log det Zr(M,M̄ ) = −16 log[(T1 + T̄1)(U1 + Ū1)]

−22
∑

j=2,3

log[(Tj + T̄j)(Uj + Ūj)] . (2.22)

From (1.7) and (1.8), then we read the following expressions for the corrected Kähler

potential and gauge kinetic function in the effective theory,6

K = −log(S + S̄) −
3
∑

i=1

log[(Ti + T̄i)(Ui + Ūi)] +
1

2

V1−loop + VE1

S + S̄
, (2.23)

V1−loop = −
4π

3

E(iU1, 2)

T1 + T̄1
, (2.24)

VE1 = −
1

π

∑

k>j≥0, p>0

e−2πkpT1

(kp)2

[

ÂK(U)

T1 + T̄1
−

2ikp

U − Ū

E10(U)

η24(U)

]

+ c.c. , (2.25)

fU(16) = S +
πT1

2
− 12log η(iU1) −

1

2

∑

k>j≥0, p>0

e−2πkpT1

kp
Af (U) , (2.26)

6We have performed an expansion of the logarithm in eq. (1.7) around weak coupling.
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where the holomorphic modular form Af is defined as in (2.13), replacing Ê2 by E2. Sev-

eral comments are in order. First, observe that the β-function coefficient exactly matches

the field theory result. Moreover, the one-loop α′ correction to the Kähler potential agrees

with the expression obtained in [1, 2] by direct computation in the type I side. In our con-

text, these corrections come from non-holomorphic terms in the contributions of degenerate

orbits. Modular transformations of the T1 modulus mix the α′ corrections with the instan-

tonic terms, in agreement with the fact that T-duality is not a symmetry of type I String

Theory. Notice also that the loop correction of [12], proportional to (Re S)3/2, is missing.

This is consistent with the fact that the internal torus has zero Euler characteristic, χ = 0,

for which the coefficient in front of the above correction vanishes.

From the field theory perspective, the E1 multi-instanton corrections of eq. (2.19), enter

as corrections to both the Kähler potential and the holomorphic gauge kinetic function. To

our knowledge, these are new corrections and their role in the low energy effective theory

still has to be clarified. In section 4, we will argue that these non-perturbative corrections

are general for any N = 2 sector in orbifold compactifications where modular invariance of

the target-space holds.

Finally, the presence of the first term in the heterotic threshold correction (2.15),

contributing to the gauge kinetic function (2.26), may seem puzzling at first sight. Indeed,

by a straightforward counting of the string coupling, this linear term in the T 2 volume

modulus T1, is expected to be a tree-level (disk) effect on the type I side. On the other

hand, the T1 modulus in the type I Z2 orbifold couples at tree-level only to type I D5

branes. A possible origin is the following. D9-branes in the BSGP model are fractional

and therefore its gauge kinetic function should receive a contribution proportional to,

∼
∑√

det(P [G + F2]) T1 , (2.27)

where the sum runs over the 16 singularities of T 4/Z2 and P [. . .] is the pull-back to the

collapsed 2-cycle of the singularity.7 In the orbifold limit, the volume of the 2-cycle is zero

and therefore the contribution from the metric vanishes. However, as pointed out in [39],

there is a non-trivial U(1) gauge bundle on the collapsed 2-cycles which, in the blow-up

limit, leads together with the 8 D5-branes to the 24 instantons which are required to satisfy

RR 3-form Bianchi identity, dF3 = Tr R ∧ R − Tr F2 ∧ F2, in a smooth K3. One therefore

expects a linear contribution to the gauge kinetic function of the D9-brane from this hidden

U(1) bundle at the singularities.

2.3 E1 instantons

Type I String Theory and its toroidal orbifolds have E5 instantons wrapping the whole

internal space and E1 instantons wrapping various two cycles, in our case instantons E1i

wrapping the T 2 torus and various two cycles inside T 4/Z2. Since the instantonic correc-

tions computed in the previous section depend on the moduli of the T 2 torus, from the

type I point of view they should come from E1 instantons wrapping T 2. These instantons

are of two different types, depending if they sit or not at Z2 orbifold fixed points.

7We thank R. Blumenhagen for pointing out this to us.
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• E1 instantons at orbifold fixed points. These instantons have unitary Chan-Paton

factors, U(r), with neutral sector given by :

– bosonic zero modes xµ, y1,2 and fermionic zero modes Θα,a, Θα̇,a, with a = 1, 2

in the adjoint representation rr̄.

– bosonic zero modes y3,4,5,6 and fermionic ones λα,a in the symmetric represen-

tation r(r+1)
2 + r̄(̄r+1)

2 .

– fermionic zero modes λ̃α̇,a in the antisymmetric representation r(r−1)
2 + r̄(̄r−1)

2 .

Regarding the charged zero modes stretched between the instanton and the corre-

sponding 1/2 D5-brane stuck at the singularity, we obtain:

– bosonic zero modes µ1,2 from the R sector and fermionic zero modes ωα from

the NS sector, in the representation r−1 + r̄1, where the subscript denotes the

U(1)5 charge.

– bosonic zero modes µ′
1,2 in the representation r+1 + r̄−1.

Finally, from the E1-D9 strings, there is a bosonic zero mode ν in the representation

rn̄ + r̄n.

• E1 instantons off the orbifold fixed points. These instantons have orthogonal Chan-

Paton factors SO(d). Here we simply give their neutral sector :

– bosonic zero modes xµ, y3,4,5,6 and fermionic zero modes Θα,a, Θα̇,a in the rep-

resentation d(d+1)
2 .

– bosonic zero modes y1,2 and fermionic ones λα,a, λα̇,a in the representation
d(d−1)

2 .

In order for the instantons to contribute to the gauge kinetic function, only four

fermionic neutral zero modes should be massless (corresponding to the “goldstinos”) [25].

Therefore, most of the above zero modes should be lifted by interactions. A possible

qualitative picture is then the following.8 First, notice that a U(1) instanton on top of a

singularity correspond to a “gauge” instanton for the U(1) gauge theory inside the corre-

sponding half D5-brane. These instantons are analogous to the ones discussed in [46], with

the extra fermionic zero modes being lifted by couplings involving the D5-branes.9 There-

fore they should be responsible for the 1-instanton (N = 1) contribution in eq. (2.19).

Notice however that in this case there is a Higgs branch which consists of moving the

instanton out of the singularity, leading to a SO(1) instanton (plus its image under the

orbifold). In this limit, the instanton has too many zero modes and does not correct the

gauge kinetic function. Similar situations where instantons only contribute in a given locus

of their moduli space have been extensively discussed in [49].

Hence, generically, for the N -instanton contribution in eq. (2.19), the moduli space of

the multi-instanton contains a subspace consisting on deformations of the instanton along

8We thank very much A. Uranga for suggesting this picture to us and patient explanations.
9
N = 2 gauge instantons in String Theory orbifolds have been also extensively discussed in [47].

– 10 –



J
H
E
P
0
8
(
2
0
0
8
)
0
6
9

the T 4/Z2 directions. In a generic point of this space the instanton gauge group is SO(1)N ,

and the number of fermionic zero modes is too high. However, in the special locus on which

all the components of the multi-instantons are on top of the same singularity, the instanton

gauge group is enhanced to U(N) and only four zero modes survive, with the extra zero

modes presumably lifted by interactions with the D5-branes.

3. The SO(q) × SO(32 − q) freely-acting orbifold

We consider now a slightly more complex class of models, given by the Z2×Z2 freely-acting

orbifold with gauge group SO(q) × SO(32 − q) presented in [16]. As already mentioned in

the introduction, the motivation is two fold. First, to understand how non-perturbative

effects are affected by the presence of a “background”, breaking some of the original global

symmetries. Second, to make more explicit and shed some light on the dependence of the

E1 instantonic corrections on the rank of the gauge group for this class of models, as it

was pointed out in [16].

In the type I side, the orbifold action on the internal coordinates is given by,

(x1, x2, x3, x4, x5, x6) → (x1 + 1/2, x2,−x3,−x4,−x5 + 1/2,−x6) , (3.1)

(x1, x2, x3, x4, x5, x6) → (−x1 + 1/2,−x2, x3 + 1/2, x4,−x5,−x6) , (3.2)

(x1, x2, x3, x4, x5, x6) → (−x1,−x2,−x3 + 1/2,−x4, x5 + 1/2, x6) . (3.3)

The massless N = 1 spectrum can be read from the partition function (see [16] for details)

and contains one chiral multiplet in the bifundamental representation, (q,32 − q). The

β-function coefficient for the SO(q) gauge group factor then reads,

bSO(q) = 4q − 38 . (3.4)

Due to the discrete shifts, modular invariance of the underlying (T 2)3 is broken to a sub-

group of it. Moreover, the E1 instantons no longer appear as singlets under the orbifold

action, but rather as doublets or quadruplets [16]. This kind of behavior is expected to be

generic e.g. in flux compactifications, where the fluxes gauge some of the originally present

symmetries and induce torsional cycles.10

3.1 Heterotic S-dual partition function

The partition function of the corresponding heterotic dual model was worked out in [16] for

the case q = 0 mod 4. The action of the orbifold on the internal coordinates is given again

by a Z2 × Z2 action. We have summarized in table 1 how each generator, f , g, h, acts on

the six internal coordinates and the gauge lattice. In addition, the action of each generator

is accompanied by a shift in the masses of the lattice states with (momentum,winding) =

(m,n) according to,

(m,n)
X
−→ (m + sX , n + s′X) , X = f, g, h . (3.5)

10A simple case are compactifications on solvmanifolds, corresponding to freely-acting orbifolds of toroidal

fibrations.
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generator x1 x2 x3 x4 x5 x6 SO(q) SO(32 − q)

g + + − − − − + +

f − − + + − − + −

h − − − − + + + −

Table 1: Orbifold action on the internal coordinates and on the gauge degrees of freedom in the

fermionic formulation.

Worldsheet modular invariance (or equivalently level-matching in the twisted sectors) then

requires [16],

q = 0 mod 8 ⇒ sf = sh = sg = s′f = s′h = s′g = 1/2 , (3.6)

q = 4 mod 8 ⇒ sf = sh = sg = s′g = 1/2 , s′f = s′h = 0 .

This is enough to completely determine the partition function. The concrete expressions

can be found in [16].

Making use of changes of variables of the form,
∫

F

d2τ

τ2
2

V(τ) =

∫

M−1(F)

d2τ

τ2
2

V(M(τ)) , (3.7)

with M a modular transformation, it is easy to reexpress the partition function in the

more compact form,11

T =

∫

F⊕S(F)⊕ST−1(F)

d2τ

τ3
2 |η|

8

1

4

{[

1

3
(τoo + τog + τoh + τof )

Ẑ1Ẑ2Ẑ3

|η|4
+

+(τoo+τog−τoh−τof )(−1)m1+n1Ẑ1

∣

∣

∣

∣

4η2

ϑ2
2

∣

∣

∣

∣

2
]

(χo+χv) +

+
[

(τoo−τog+τoh−τof )(−1)m3+n3+
qn3
4 Ẑ3+

+(τoo−τog−τoh+τof )(−1)m2+n2+
qn2
4 Ẑ2

]

∣

∣

∣

∣

4η2

ϑ2
2

∣

∣

∣

∣

2

(χo − χv)

}

, (3.8)

where the characters χo and χv are given in the fermionic formulation of the gauge degrees

of freedom by,

χo = O32−qOq + C32−qCq , χv = V32−qVq + S32−qSq , (3.9)

with Or, Vr, Sr and Cr the standard SO(r) affine characters. The lattice sums with a sign

insertion are given by,

(−1)m1+hn1Ẑi =
Re Ti

τ2

∑

n1,ℓ1,n2,ℓ2

(−1)hn1ℓ1

×exp



−2πTidet(A) −
π(Re Ti)

τ2(Re Ui)

∣

∣

∣

∣

∣

(

1 iUi

)

A

(

τ

−1

)∣

∣

∣

∣

∣

2


 , (3.10)

11These changes of variables are of course not unique. We could have equally chosen a different set of

modular transformations M (coset representatives), leading to a different integrand and integration region.
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and,

A =

(

n1 ℓ1 + 1
2

n2 ℓ2

)

(3.11)

The whole KK spectrum precisely matches the corresponding one on the type I S-dual

side, whereas the massive winding states and the massive twisted spectra are, as expected,

quite different. It should be also noticed that while the KK spectra are actually the same

for the two cases, q = 0 and q = 4 (mod 8), they are very different in the massive winding

sector. We refer the interested reader to [16] for the concrete expressions of the partition

functions in the type I S-dual side and other details.

3.2 Perturbative and non-perturbative corrections

Starting with the partition function (3.8) and proceeding in the same way as we did with

the BSGP orbifold, it can be shown that the threshold corrections to the physical gauge

couplings (c.f. eq. (1.1)) are given in this case by,

ΛSO(q) ≡
bSO(q)

4
log

M2
s

µ2
+

∆SO(q)

4

= −
1

4

∫

FΓ0(2)

d2τ

τ2



(−1)m1+n1Ẑ1Â
[0,1]
f,1 +

∑

r=2,3

(−1)mr+nr+ qnr
4 ẐrÂ

[0,1]
f,2



 , (3.12)

where,

Â
[0,1]
f,1 (τ) =

ϑ2
3ϑ

2
4E4(Ê2E4 − E6)

12η24
(3.13)

Â
[0,1]
f,2 (τ) =

ϑ2
3ϑ

2
4

24η24

[

ϑ
q/2
3 ϑ

16−q/2
4 (Ê2 + ϑ4

2 − ϑ4
4) + ϑ

q/2
4 ϑ

16−q/2
3 (Ê2 − ϑ4

2 − ϑ4
3)
]

(3.14)

The details can be found in appendix A.2. In order to perform this integral, notice that

the integration region,

FΓ0(2) ≡ F ⊕ S(F) ⊕ ST−1(F) , (3.15)

which we have represented in figure 2, corresponds to the fundamental domain of the

congruence subgroup Γ0(2) ⊂ SL(2, Z). This consists of the modular matrices of the

form [43, 44],
(

2a + 1 b

2c 2d + 1

)

(3.16)

The generators of Γ0(2) are T and ST 2S. Under these, Â
[0,1]
f,2 transforms as,

Â
[0,1]
f,2

T
−→ Â

[0,1]
f,2 , Â

[0,1]
f,2

ST 2S
−−−→ (−1)q/4Â

[0,1]
f,2 , (3.17)

whereas Â
[0,1]
f,1 keeps invariant. We can therefore classify the matrices (3.11) in orbits

under Γ0(2) in order to unfold the integral (3.12), similarly to what we did for the BSGP
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-2 -1 0 1 2

0

1

2

3

4

Figure 2: Representation of FΓ0(2), the fundamental domain for Γ0(2).

model.12 There are four kinds of orbits (three non-degenerate and one degenerate), whose

representatives can be taken to be,

1. Degenerate orbits:
(

0 j + 1
2

0 p

)

,

with (j, p) ∼ (−j − 1,−p) and AV = AV ′ iff V = T nV ′ for some integer n and

V, V ′ ∈ Γ0(2).

2. Non-degenerate orbits:

I:

(

k j + 1
2

0 p

)

, II:

(

j −k − 1
2

p 0

)

, III:

(

j − k −k − 1
2

p 0

)

,

with k > j ≥ 0, p 6= 0 and AV = AV ′ iff V = V ′, for V, V ′ ∈ Γ0(2).

We can therefore unfold (3.12) into four integrals corresponding to the above represen-

tatives. The details are again relegated to the appendix. Putting all pieces together we

12One could worry about the sign in the transformation of Â
[0,1]
f,2 under ST 2S, for q = 4 mod 8. However,

this is automatically cancelled by the transformation of the lattice sum,

(−1)mr+nr+
qnr

4 Ẑr
ST2S
−−−−→ (−1)q/4(−1)mr+nr+

qnr

4 Ẑr (3.18)

as required by modular invariance of (3.12). Alternatively, we could have performed an extra change of

variables in (3.12) and reexpressed it as an integral over the fundamental domain of Γ0(4) ⊂ Γ0(2), given

by modular matrices of the form,
 

2a + 1 b

4c 2d + 1

!

, (3.19)

obtaining the same final result.
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obtain,

ΛSO(q) = −
π

2



5E1/2(iU1, 1) +
q − 17

3

∑

r=2,3

E1/2(iUr, 1)



 + (3.20)

+
π

360



124
E1/2(iU1, 2)

T1 + T̄1
+

1

2

∑

r=2,3

(q2 − 32q + 248)
E1/2(iUr, 2)

Tr + T̄r



−

−
1

4

∑

k>j≥0, p>0

∑

[h,g]

(−1)gk+hj

pkh



e−2πpkhT1



Â
[h,g]
f,1

(

U
[h,g]
1

)

+
1

πpkh

Â
[h,g]
K,1

(

U
[h,g]
1

)

T1 + T̄1



+

+
∑

r=2,3

(−1)(hj+gk) q
4 e−2πpkhTr



Â
[h,g]
f,2

(

U [h,g]
r

)

+
1

πpkh

Â
[h,g]
K,2

(

U
[h,g]
r

)

Tr + T̄r







+c.c. ,

where Â
[h,g]
f,i and Â

[h,g]
K,i , i = 1, 2, are given in appendix A.2.1, kh ≡ k + h

2 , and the shifted

non-holomorphic Eisenstein series, E1/2(U, k), are defined as,

E1/2(U, k) ≡
1

ζ(2k)

∑

j1,j2

(Im U)k

|j1 + j2U + 1/2|2k
, (3.21)

In particular [16],

E1/2(iU, 1) = −
3

π
(log|ϑ2(iU)|4 + πRe U + log[(Re U)(Re T )µ2]) + const. . (3.22)

The sum of [h, g] in (3.20) extends over [1, 0], [0, 1] and [1, 1], labelling the three types

of E1r multi-instantons contributing to (3.12). The induced complex structure on their

worldvolume is given by,

U [h,g]
r =

j + ipUr + g/2

k + h/2
, (3.23)

corresponding to instantons wrapping the torsional cycles of the twisted cohomology, as

illustrated in figure 3, or alternatively, multi-instantons with discrete Wilson lines (α, β) ∈

{(0, 1
2), (1, 0), (1, 1

2)} [24].

Subtracting the gauge group dependent part, along the lines of eqs. (1.7) and (1.8), we

obtain the following corrections to the effective Kähler potential and gauge kinetic function,

K = −log(S + S̄) −
3
∑

i=1

log[(Ti + T̄i)(Ui + Ūi)] +
1

2

3
∑

i=1

V i
1−loop + V i

E1

S + S̄
, (3.24)

V 1
1−loop =

62π

45

E1/2(iU1, 2)

T1 + T̄1
, (3.25)

V r
1−loop =

π

180
(q2 − 32q + 248)

E1/2(iUr, 2)

Tr + T̄r
, (3.26)

V 1
E1 = −

∑

k>j≥0, p>0

∑

[h,g]

(−1)gk+hj

p2k2
h

e−2πpkhT1 (3.27)

×





Â
[h,g]
K,1

(

U
[h,g]
1

)

T1 + T̄1
−

iπpkh

U
[h,g]
1 − Ū

[h,g]
1

χ1

[

h

g

]

(U
[h,g]
1 )



 + c.c.
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[1,1]

(k+1/2,0) (k,0) (k+1/2,0)

(j,p) (j+1/2,p) (j+1/2,p)

[1,0] [0,1]

Figure 3: The three possible types of E1r multi-instantons, [h, g] = {[1, 0], [0, 1], [1, 1]}, wrapping

torsional cycles in the r-th 2-torus in the SO(q) × SO(32 − q) model, with induced worldvolume

complex structure U
[h,g]
r given in eq. (3.23). The continues lines represent the lattice of the under-

lying 2-torus. The orbifold generator reversing the transverse coordinates to the instanton, shifts

the lattice to the dashed one.

V r
E1 = −

∑

k>j≥0, p>0

∑

[h,g]

(−1)(hj+gk)( q
4
+1)

p2k2
h

e−2πpkhTr (3.28)

×





Â
[h,g]
K,2

(

U
[h,g]
r

)

Tr + T̄r
−

iπpkh

U
[h,g]
r − Ū

[h,g]
r

χ2

[

h

g

]

(U [h,g]
r )



 + c.c. ,

fSO(q) = S +
15π

2
U1 + 30log ϑ2(iU1) + (q − 17)

∑

r=2,3

[π

2
Ur + 2log ϑ2(iUr)

]

− (3.29)

−
1

2

∑

k>j≥0, p>0

∑

[h,g]

(−1)gk+hj

pkh

[

e−2πpkhT1A
[h,g]
f,1 (U

[h,g]
1 )+

+
∑

r=2,3

(−1)(hj+gk) q
4 e−2πpkhTrA

[h,g]
f,2 (U [h,g]

r )

]

,

where A
[h,g]
f,i is defined as Â

[h,g]
f,i , but replacing Ê2 by E2, and we have introduced the

notation,

χ1

[

h

g

]

(τ) ≡
4(χo + χv)

η2ϑ
[

1−h
1−g

]2 , χ2

[

0

1

]

(τ) ≡
χo − χv

η8
ϑ2

3ϑ
2
4 ,

χ2

[

1

0

]

(τ) ≡ χ2

[

0

1

]

(Sτ) , χ2

[

1

1

]

(τ) ≡ χ2

[

0

1

]

(ST−1τ) .

Several comments are in order. First, notice that the field theory result for the β-function

coefficient, (3.4), is correctly reproduced. The overall structure of the non-perturbative

and loop corrections is very similar to the ones in the BSGP orbifold, but the standard

Eisenstein series and Hecke operators are replaced by the corresponding automorphic forms

of Γ0(2). Moreover, there is a non-trivial dependence of the non-perturbative dynamics on

the rank of the gauge group, through the phases exp[iπ(hj + gk) q
4 ]. These would explain

why in the heterotic side the orbifold action on the winding modes is very different, de-

pending on the value of q (c.f. eq. (3.6)). This behavior may resemble in spirit the more
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familiar situation of ordinary gauge theory instantons, where their contributions are often

subjected to constraints depending on the ranks of the gauge group.

By a direct inspection of (3.20), it is easy to check the fact that instantonic corrections

are gauge-group independent when they come from instantons which are left invariant

by the orbifold operations acting trivially on the gauge degrees of freedom; whereas they

are gauge-group dependent if they come from instantons left invariant by the orbifold

operations which act non-trivially on the gauge degrees of freedom.

Finally, let us mention the possibility of additional non-perturbative corrections coming

from purely N = 1 sectors, not considered here. Precisely, in [24] it was argued for the q =

32 case, the presence of extra non-perturbative contributions to the gauge thresholds, due

to the combined effect of multi-instantons wrapping different cycles of the internal space.

4. Universality of N = 2 corrections

The importance of global symmetries in determining the expression of non-perturbative

and α′ corrections which come from BPS states has been pointed out very often in the

literature [28]. The results in the previous sections, based on the S-duality map, reveal

that the string loop and E1 multi-instanton effects coming from N = 2 subsectors of the

theory arise in terms of non-holomorphic Eisenstein series and Hecke operators relevant to

the global symmetry preserved by the orbifold. In this section, we elaborate on a certain

“universality” of the N = 2 corrections computed in the BSGP orbifold. Similar aspects

have been discussed in the context of α′ corrections to the gauge couplings in heterotic

compactifications [34, 36, 20, 37].

Precisely, we would like to consider toroidal orbifold compactifications on which the

orbifold action, G, contains some subgroup, G
i, leaving unrotated a given complex plane.

The contribution of these sectors to the threshold corrections to the physical gauge cou-

plings can be expressed as,

Λa = −
1

8

∑

i

∫

F

d2τ

τ2
ẐiÂ

a
f,i , (4.1)

where the sum runs over the disjoint union of N = 2 subsectors, each leaving invariant a

single complex plane, and the gauge group is given by a product G =
∏

a Ga. The lattice

sums, Ẑi, are given in eq. (2.3), where Ti and Ui are now the Kähler and complex structure

moduli of the corresponding unrotated complex plane. Moreover, Âa
f,i ∼ Ma

i /η24, with Ma
i

an almost holomorphic modular form of degree 24.

The space of holomorphic forms of degree 24 is a vector space of dimension 2, engen-

dered by the Eisenstein series E2
6 and E3

4 [43, 44]. If we also allow for almost holomorphic

modular forms, we have to include in addition Ê2E10.
13 Hence Ma

i is in general determined

by three coefficients, which usually can be obtained from the low energy spectrum. More

precisely, imposing the absence of tachyons in the spectrum, we obtain,

Âa
f,i = 2ba

i +
γi

20η24

[

D10E10 − 528η24
]

, (4.2)

13We could also think about including terms with higher powers of Ê2, e.g. Ê2
2E2

4 . However, these terms

are forbidden by N = 2 supersymmetry [29].
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where ba
i is the β-function coefficient of the N = 2 gauge theory associated to a would-be

T 6/G
i orbifold, γi is a model dependent (but gauge group independent) coefficient to be

determined, and we have made use of the identities,

D10E10 =
2

3
E2

6 + E3
4 −

5

3
Ê2E10 , η24 =

1

26 · 33
[E3

4 − E2
6 ] . (4.3)

Proceeding as in section 2.2 we get,

Λa =
∑

i

{

π(ba
i + 6γi)

12
Re Ti +

πγi

3

E(iUi, 2)

Ti + T̄i

−
1

4





∑

k>j≥0,p>0

1

kp
e−2πpkTi

[

Âa
f,i(Ui) −

γi

πkp

ÂK(Ui)

Ti + T̄i

]

+ c.c.





−
ba
i

4

(

log|η(iUi)|
4 + log[(Re Ui)(Re Ti)µ

2]
)

}

, (4.4)

with ÂK and Ui defined in (2.17) and (2.18), respectively. From this expression, we can

then extract the corrected Kähler potential and gauge kinetic functions of the effective

theory, as we did in previous sections, obtaining

K = −log(S + S̄) −
∑

i

{

log[(Ti + T̄i)(Ui + Ūi)] +
1

2

V i
1−loop + V i

E1

S + S̄

}

+ · · · , (4.5)

V i
1−loop =

4πγi

3

E(iUi, 2)

Ti + T̄i
, (4.6)

V i
E1 =

γi

π

∑

k>j≥0, p>0

e−2πkpTi

(kp)2

[

ÂK(Ui)

Ti + T̄i
−

2ikp

Ui − Ūi

E10(Ui)

η24(Ui)

]

+ c.c. , (4.7)

fa = S +
∑

i

{

π(ba
i + 6γi)Ti

12
− ba

i log η(iUi) −
1

2

∑

k>j≥0, p>0

e−2πkpTi

kp
Aa

f,i(Ui)

}

+ · · · ,

(4.8)

where the dots refer to possible additional corrections from other sectors. The interpreta-

tion of these terms is similar to the one discussed in sections 2.2 and 2.3.

Notice that these expressions in principle also apply in orbifolds where the heterotic

S-dual description is unknown, and therefore our technique in principle no longer applies.

It would be very interesting to obtain the general formula for the N = 2 corrections by

direct computation in the type I orbifold, and to see whether there is agreement with our

conjectured expression.

5. Concluding remarks

In the present paper we explicitly computed the E1 instantonic corrections to the gauge

kinetic function f and to the Kähler potential K in N = 2 and N = 1 type I string vacua

which have known heterotic S-duals. We showed that one-loop threshold corrections to

gauge couplings in the heterotic dual encode one-loop and instantonic corrections for both
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f and K on the type I side, whereas the corresponding direct one-loop type I threshold cor-

rection misses the one-loop correction to the Kähler potential, computed by other methods

in [1] and [2]. We gave arguments based on target-space modular invariance on universality

properties of instantonic corrections in N = 2 vacua. It is clear however that our results

apply to the much larger class of models of N = 1 type I models with N = 2 subsectors,

like for example the Z6, Z
′
6, Z8 or Z12 type I orbifolds.

We performed a similar computation in dual pairs in compactifications on smooth

Calabi-Yau spaces which have an exact CFT description, based on a recently worked

out class of freely-acting S-dual pairs [16]. We showed that even if the heterotic duals

of perturbatively connected type I models have different orbifold actions in the twisted

(winding) sector, the S-duality maps correctly heterotic α′ corrections into type I instan-

tonic corrections. As a byproduct, we also checked the intuitively obvious statement that

instantonic corrections are gauge-group independent if coming from instantons left invari-

ant by orbifold operations acting trivially on the gauge degrees of freedom, whereas they

are gauge-group dependent if coming from instantons left invariant by orbifold operations

acting non-trivially on the gauge degrees of freedom.

As already argued in [16], it is clear that whereas our discussion was focused on multi-

instantonic corrections to the gauge kinetic function and the Kähler potential, similar multi-

instanton corrections are expected to occur for the superpotential. A simple argument

can be given in the case (explicitly realized by the string construction of [16]) where non-

perturbative gauge (E5 instantonic) effects occur on D9-branes, leading to a superpotential,

Wnp = e−b(S+f1(Ui)+fnp(Ui,Ti)) =
∑

n

cn(Ui) e−2πnT e−bS (5.1)

Whereas non-perturbative corrections to the superpotential are well-known to play a cru-

cial role in moduli stabilization [10], we expect that instantonic corrections to the Kähler

potential may play also an important role in some scenarios of moduli stabilization, for

example in the large-volume scenario [13]. Moreover, the instantonic corrections to the

gauge kinetic function are expected to modify the gauge couplings and gaugino masses,

and in particular may become relevant in concrete phenomenological models.

Another interesting direction which our paper has left partially open is the detailed

type I microscopic derivation of the multi-instanton effects obtained here from S-duality,

which should involve in an important way the lifting of fermionic zero-modes by instanton

interactions along the lines of [48, 49].

It would be, finally, very instructive to perform similar studies in the S-dual pairs of

N = 1 orbifold models conjectured in [50, 51] and learn more about non-perturbative dy-

namics of both sides using α′ corrections on the heterotic side and instantonic computations

on the type I side.
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A. Details on the computations

A.1 The BSGP model

A.1.1 Elliptic genera

In order to express the elliptic genus in terms of ordinary modular forms we use the following

relations,

ϑ4

[

0

±1/2

]

=
1

2
ϑ3ϑ4(ϑ

2
3 + ϑ2

4) , ϑ4

[

1

±1/2

]

=
ϑ3

2η
3

ϑ2
3 + ϑ2

4

, (A.1)

ϑ4

[

±1/2

0

]

=
1

2
ϑ2ϑ3(ϑ

2
2 + ϑ2

3) , ϑ4

[

±1/2

1

]

= −
ϑ3

4η
3

ϑ2
2 + ϑ2

3

, (A.2)

ϑ4

[

±1/2

±1/2

]

=
1

2
ϑ2ϑ4(ϑ

2
2 − iϑ2

4) , ϑ4

[

±1/2

∓1/2

]

=
ϑ3

3η
3

ϑ2
2 − iϑ2

4

, (A.3)

and,

ϑ′′
[

0
±1/2

]

ϑ
[

0
±1/2

] =
iπ3

3
(4E2 + ϑ4

3 − 6ϑ2
3ϑ

2
4 + ϑ4

4) , (A.4)

ϑ′′
[

1
±1/2

]

ϑ
[

1
±1/2

] =
iπ3

3
(4E2 + ϑ4

3 + 6ϑ2
3ϑ

2
4 + ϑ4

4) , (A.5)

ϑ′′
[

±1/2
0

]

ϑ
[

±1/2
0

] =
iπ3

3

(

4E2 + 4ϑ4
3 +

(ϑ2
2 − 5ϑ2

3)ϑ
4
4

ϑ2
2 + ϑ2

3

)

, (A.6)

ϑ′′
[

±1/2
1

]

ϑ
[

±1/2
1

] =
iπ3

3

(

4E2 − 8ϑ4
3 +

(ϑ2
2 + 7ϑ2

3)ϑ
4
4

ϑ2
2 + ϑ2

3

)

, (A.7)

ϑ′′
[

±1/2
±1/2

]

ϑ
[

±1/2
±1/2

] =
iπ3

3

(

4E2 − 8ϑ4
4 + 7ϑ4

3 −
6ϑ2

2ϑ
4
3

ϑ2
2 − iϑ2

4

)

, (A.8)

ϑ′′
[

±1/2
∓1/2

]

ϑ
[

±1/2
∓1/2

] =
iπ3

3

(

4E2 + 4ϑ4
4 − 5ϑ4

3 +
6ϑ2

2ϑ
4
3

ϑ2
2 − iϑ2

4

)

. (A.9)

Then it is possible to show that,

A1 ≡ 2

(

Γ̄

[

0

1

]

ϑ2
3ϑ

2
4 + Γ̄

[

1

0

]

ϑ2
2ϑ

2
3 + Γ̄

[

1

1

]

ϑ2
2ϑ

2
4

)

=
2E4E6

η16
=

2E10

η16
, (A.10)

A2 ≡ ∂2
ν1

A1 = −
2π2

3η16

(

E2E4E6 −
5

12
E2

6 −
7

12
E3

4

)

, (A.11)
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where ∂ν1 acts on the first SO(2) character in Γ̄
[

h
g

]

, with affine parameter ν1. Therefore,

Âf ≡ −
1

8πη̄8

(

A1

τ2
+

A2

π

)

=
1

12η24

(

Ê2E10 −
5

12
E2

6 −
7

12
E3

4

)

= −24 +
60

πτ2
+ · · · (A.12)

The other modular form that we will need in the computation of the thresholds is,

ÂK ≡
1

4π

(

i∂τ −
1

τ2

)

E10

η24
(A.13)

Taking into account that E10 = E4E6 and,

∂τE4 = −
2πi

3
(E6 − E2E4) , ∂τE6 = −πi(E2

4 − E2E6) , (A.14)

we then obtain,

ÂK =
1

12η24
(Ê2E4E6 + 2E2

6 + 3E3
4) . (A.15)

A.1.2 Zero orbit

For the zero orbit we have the contribution,

Λ0 = −
Re T1

8

∫

F

d2τ

τ2
2

Âf =

= −
Re T1

96

∫

F

d2τ

τ2
2

[

Ê2(e
−2πiτ − 240 + · · · ) − e−2πiτ − 24 + · · ·

]

(A.16)

Making use of the formula [45],
∫

F

d2τ

τ2
2

(Ê2)
r(c−1e

−2πiτ + c0 + · · · ) =
π

3(r + 1)
[c0 − 24(r + 1)c−1] , (A.17)

we get,

Λ0 =
π

2
(Re T1) . (A.18)

A.1.3 Degenerate orbits

In this case we have to compute the contribution,

Λd = −
Re T1

8

∫

FT

d2τ

τ2
2

(

60

πτ2
− 24 + O(e2πiτ )

)

∑

j,p

exp

[

−
πRe T1

τ2Re U1
|j + ipU1|

2

]

(A.19)

where the integration region, FT , corresponds to the upper band {|τ1| < 1/2, τ2 > 0}.

This can be done using the formula [29],
∫

FT

d2τ

τ1+r
2

∑

j,p

exp

[

−
πRe T

τ2Re U
|j + ipU |2

]

=
2Γ(r)ζ(2r)

(πRe T )r
E(iU, r) . (A.20)

Taking into account that,

E(iU, 1) = −
3

π
(log |η(iU)|4 + log [(Re T )(Re U)]µ2) + const. , (A.21)

with µ2 the infrared regulator and “const.” a renormalization scheme dependent constant

which we will disregard in what follows, we obtain,

Λd = −3(log |η(iU1)|
4 + log [(Re T1)(Re U1)µ

2]) −
π

3

E(iU1, 2)

T1 + T̄1
. (A.22)
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A.1.4 Non-degenerate orbits

Finally, for non-degenerate orbits we need to compute,

Λnd = −
Re T1

4

∫

C+

d2τ

τ2
2

∑

k>j≥0, p 6=0

∑

n

(

d1(n) −
d2(n)

4πτ2

)

×

× e2πiτnexp

[

−2πT1kp −
πRe T1

τ2Re U1
| − j − iU1p + kτ |2

]

, (A.23)

where we have expanded,

Af =
∑

n

d1(n)e2πinτ ,
E10

η24
=
∑

n

d2(n)e2πinτ (A.24)

Performing first the integration on τ1,

Λnd = −
[(Re T1)(Re U1)]

1/2

4

∑

k>j≥0, p 6=0

∑

n

∫ ∞

0

dτ2

τ
3/2
2

1

k

(

d1(n) −
d2(n)

4πτ2

)

×

× exp

[

−2πi(Im T1)kp + 2πin

(

j − p(Im U1)

k

)]

× exp

[

−
π(Re T1)

Re U1

(

k +
n(Re U1)

k(Re T1)

)2

τ2 −
πp2(Re T1)(Re U1)

τ2

]

Then the integral on τ2 can be carried out with the aid of,

∫ ∞

0

dx

x3/2
e−ax−b/x =

√

π

b
e−2

√
ab , (A.25)

∫ ∞

0

dx

x5/2
e−ax−b/x =

(

1

2b
+

√

a

b

)
√

π

b
e−2

√
ab . (A.26)

And summing over n, we finally get,

Λnd = −
1

4

∑

k>j≥0, p>0

e−2πkpT1

kp

(

Âf (U) +
1

πkp(T1 + T̄1)
ÂK(U)

)

+ c.c. (A.27)

with Âf , ÂK and U defined in (2.13), (2.17) and (2.18), respectively.

A.2 The SO(q) × SO(32 − q) model

A.2.1 Elliptic genera

The relevant characters for this model are,

χo + χv =
E2

4

η16
, χo − χv =

1

2η16
(ϑ

q/2
3 ϑ

16−q/2
4 + ϑ

q/2
4 ϑ

16−q/2
3 ) (A.28)

Then, it is possible to show that,

Â
[0,1]
f,1 ≡ −

ϑ2
3ϑ

2
4

4πη8

(

1

τ2
+

∂2
ν1

π

)

(χo + χv) =
ϑ2

3ϑ
2
4E4(Ê2E4 − E6)

12η24
= 60 −

124

πτ2
+ · · · (A.29)
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Â
[0,1]
f,2 ≡ −

ϑ2
3ϑ

2
4

4πη8

(

1

τ2
+

∂2
ν1

π

)

(χo − χv)

=
ϑ2

3ϑ
2
4

24η24

[

ϑ
q/2
3 ϑ

16−q/2
4 (Ê2 + ϑ4

2 − ϑ4
4) + ϑ

q/2
4 ϑ

16−q/2
3 (Ê2 − ϑ4

2 − ϑ4
3)
]

(A.30)

= 4(q − 17) −
q2 − 32q − 248

2πτ2
+ · · · .

The other modular forms that we need are,

Â
[0,1]
K,1 ≡

1

4π

(

i∂τ −
1

τ2

)

(E4ϑ3ϑ4)
2

η24
=

E4ϑ
2
3ϑ

2
4

24η24
[8E6 + E4(ϑ

4
4 + ϑ4

3) + 2Ê2E4] (A.31)

Â
[0,1]
K,2 ≡

1

4π

(

i∂τ −
1

τ2

)

ϑ2
3ϑ

2
4

2η24
(ϑ

q/2
3 ϑ

16−q/2
4 + ϑ

q/2
4 ϑ

16−q/2
3 ) =

=
ϑ2

3ϑ
2
4

96η24

[

ϑ
16−q/2
4 ϑ

q/2
3

(

8Ê2 +

(

14 −
3q

2

)

ϑ4
2 + 20ϑ4

3

)

+

+ϑ
16−q/2
3 ϑ

q/2
4

(

8Ê2 −

(

14 −
3q

2

)

ϑ4
2 + 20ϑ4

4

)]

, (A.32)

Finally, we define S and the ST−1 transformed forms,

Â
[1,0]
f,i (τ) = Â

[0,1]
f,i (Sτ) , Â

[1,1]
f,i (τ) = Â

[0,1]
f,i (ST−1τ) , (A.33)

Â
[1,0]
K,i (τ) = Â

[0,1]
K,i (Sτ) , Â

[1,1]
K,i (τ) = Â

[0,1]
K,i (ST−1τ) . (A.34)

for i = 1, 2.

A.2.2 Degenerate orbits

For the degenerate orbits we have the contribution,

Λd = −
1

8

∫

FT

d2τ

τ2
2

∑

p,j

{

(

60 −
124

πτ2
+ · · ·

)

(Re T1)exp

[

−
πRe T1

τ2Re U1

∣

∣

∣

∣

j +
1

2
+ ipU1

∣

∣

∣

∣

2
]

+
∑

r=2,3

(

4(q−17)−
q2−32q − 248

2πτ2
+· · ·

)

(Re Tr)exp

[

−
πRe Tr

τ2Re Ur

∣

∣

∣

∣

j+
1

2
+ipUr

∣

∣

∣

∣

2
]}

,

where the dots correspond to order O(e2πiτ ) terms not contributing to the final expression.

Proceeding as in section A.1.3, we obtain,

Λd = −
π

2



5E1/2(iU1, 1) +
q − 17

3

∑

r=2,3

E1/2(iUr, 1)





+
π

360



124
E1/2(iU1, 2)

T1 + T̄1
+

1

2

∑

r=2,3

(q2 − 32q + 248)
E1/2(iUr, 2)

Tr + T̄r



 , (A.35)

with E1/2(U, k) the shifted non-holomorphic Eisenstein series defined in (3.21).
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A.2.3 Non-degenerate orbits

We begin computing the contribution from non-degenerate orbits of type I. This is given by,

ΛndI
= −

1

4

∫

C+

d2τ

τ2
2

∑

p 6=0,k>j≥0

∞
∑

n=0

e2πiτn(−1)k

×

[

(Re T1)

(

d1(n) −
d2(n)

4πτ2

)

exp

(

−2πkpT1 −
πRe T1

τ2Re U1
|kτ − j −

1

2
− ipU1|

2

)

+
∑

i=2,3

(Re Ti)

(

d3(n)−
d4(n)

4πτ2

)

(−1)
qk
4 exp

(

−2πkpTi−
πRe Ti

τ2Re Ui
|kτ−j−

1

2
−ipUi|

2

)

]

where we have performed the expansions,

A
[0,1]
f,1 =

∑

n

d1(n)e2πiτn ,
(E4ϑ3ϑ4)

2

η24
=
∑

n

d2(n)e2πiτn ,

A
[0,1]
f,2 =

∑

n

d3(n)e2πiτn ,
(ϑ3ϑ4)

2

2η24
(ϑ

q/2
3 ϑ

16−q/2
4 + ϑ

q/2
4 ϑ

16−q/2
3 ) =

∑

n

d4(n)e2πiτn .

Proceeding exactly in the same way as in section A.1.4, we obtain,

ΛndI
= −

1

4

∑

p>0,k>j≥0

(−1)k

pk



e−2πpkT1



Â
[0,1]
f,1 (U

[0,1]
1 ) +

Â
[0,1]
K,1 (U

[0,1]
1 )

πkp(T1 + T̄1)





+
∑

r=2,3

(−1)
kq
4 e−2πrkTr



Â
[0,1]
f,2 (U [0,1]

r )+
Â

[0,1]
K,2 (U

[0,1]
r )

πkp(Tr + T̄r)







+c.c. , (A.36)

with U
[h,g]
r defined in (3.23).

For type II (type III) non-degenerate orbits we proceed in the same way, but perform-

ing a change of variables by the corresponding coset representative, τ → Sτ (τ → ST−1τ),

obtaining,

ΛndII
= −

1

4

∑

p>0,k>j≥0

(−1)j

p
(

k + 1
2

)



e−2πp(k+ 1
2)T1



Â
[1,0]
f,1 (U

[1,0]
1 ) +

Â
[1,0]
K,1 (U

[1,0]
1 )

πp
(

k + 1
2

)

(T1 + T̄1)





+
∑

r=2,3

(−1)
jq
4 e−2πr(k+1

2)Tr



Â
[1,0]
f,2 (U [1,0]

r )+
Â

[1,0]
K,2 (U

[1,0]
r )

πp
(

k+ 1
2

)

(Tr+T̄r)







+ c.c. , (A.37)

and

ΛndIII
= −

1

4

∑

p>0,k>j≥0

(−1)k+j

p
(

k + 1
2

)



e−2πp(k+ 1
2)T1



Â
[1,1]
f,1 (U

[1,1]
1 ) +

Â
[1,1]
K,1 (U

[1,1]
1 )

πp
(

k + 1
2

)

(T1 + T̄1)





+
∑

r=2,3

(−1)
(k+j)q

4 e−2πr(k+ 1
2)Tr



Â
[1,1]
f,2 (U [1,1]

r )+
Â

[1,1]
K,2 (U

[1,1]
r )

πp
(

k+ 1
2

)

(Tr+T̄r)







+ c.c. .(A.38)

– 24 –



J
H
E
P
0
8
(
2
0
0
8
)
0
6
9

References

[1] I. Antoniadis, C. Bachas, C. Fabre, H. Partouche and T.R. Taylor, Aspects of type-I-

type-II-heterotic triality in four dimensions, Nucl. Phys. B 489 (1997) 160 [hep-th/9608012].
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